Chem. Ber. 113, 1646 – 1653 (1980)

Cyclische µ-(4-Methylcyclohexadien-1-ylidenio)-bis[phosphangold(I)]-Kationen

Hubert Schmidbaur* und Yoshio Inoguchi

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 21. August 1979

Aus den α,ω -Bis[(chloroaurio)diphenylphosphino]alkanen **1b** – **d** wurden durch Arylierung mit *p*-Tolyllithium die zweikernigen Tolylgoldverbindungen [(*p*-CH₃C₆H₄Au)P(C₆H₅)₂]₂[CH₂]_n mit n = 2, 3 und 4 (**2b** – **d**) synthetisiert. Zusätzlich wurde *p*-CH₃C₆H₄AuP(CH₃)₃ als NMR-Vergleichssubstanz hergestellt. **2d** liefert bei der Behandlung mit etherischem HBF₄ unter Abspaltung von Toluol das Kation *p*-CH₃C₆H₄(AuP(C₆H₅)₂(CH₂)₂]₂ + BF₄⁻, dem aufgrund der NMRund ¹⁹⁷Au-Mößbauer-Spektren die cyclische Struktur **3d** zugeschrieben wird.

Cyclic µ-(4-Methylcyclohexadien-1-ylidenio)-bis[phosphanegold(I)] Cations

Arylation of α,ω -bis[(chloroaurio)diphenylphosphino]alkanes 1b - d using *p*-tolyllithium yields the binuclear tolylgold compounds [(*p*-CH₃C₆H₄Au)P(C₆H₅)₂]₂[CH₂]_n with n = 2, 3, and 4 (2b-d). *p*-CH₃C₆H₄AuP(CH₃)₃ was obtained similarly as an NMR reference compound. 2d is converted into the cation *p*-CH₃C₆H₄[AuP(C₆H₅)₂(CH₂)₂]₂⁺ BF₄⁻ on treatment with HBF₄ in diethyl ether, with elimination of toluene. The product is ascribed the cyclic structure 3d, based on NMR and ¹⁹⁷Au Mößbauer data.

Einleitung

Nesmeyanov und Mitarbb. haben im Jahre 1972 einen neuen Typ goldorganischer Verbindungen beschrieben und deren Chemie seither erheblich ausgeweitet^{1a-d)}. Diese Substanzklasse ist gekennzeichnet durch die Verknüpfung zweier R₃PAu-Einheiten mit nur einem C-Atom eines Phenylrings, eines Cyclopentadienylkomplexes oder eines Alkens. Man kann sie sich formal entstanden denken aus einer entsprechenden klassischen gold(I)-organischen Verbindung und einem R₃PAu[⊕]-Kation, und in der Tat lassen sich auch die Syntheseverfahren nach diesem mechanistischen Schema interpretieren.

Wegen der erheblichen Bedeutung einer derartigen Species, z. B. als Modellsubstanz für die elektrophile Substitution an Aromaten und Olefinen oder für die Metall-Metall-Wechselwirkung eng benachbarter, an ein einziges C-Atom gebundener Edelmetalle

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/0505 – 1646 \$ 02.50/0

etc., haben wir einige Experimente nachgearbeitet und dann versucht, erstmals durch Verknüpfung der beiden Phosphanliganden einen cyclischen Repräsentanten herzustellen.

Wir knüpfen dabei an einschlägige Arbeiten über Ylid- und Phosphankomplexe mit Au – Au-Bindung^{2a-d}) an.

Die Untersuchungen sind weiter im Zusammenhang zu sehen mit den Ergebnissen über analoge Arylkupfer-, -silber- und -goldcluster, die in jüngster Zeit vor allem durch *van Koten* vorgelegt worden sind^{3a-o}.

Während in den bisherigen Studien nach der Formel A ausschließlich Triphenylphosphan als Ligand eingesetzt wurde, sollten nun über α,ω -Bis(diphenylphosphino)alkane die gesuchten cyclischen Produkte B zugänglich werden. Die Linearität der CAuP-Bindungen und der große Valenzwinkel AuCAu ließen dafür erwarten, daß n mindestens größer als 3 sein sollte.

1. p-Tolylgold-Vorstufen

Aus den Nesmeyanovschen Arbeiten ist bekannt, daß der gesuchte Verbindungstyp mit solchen Arylresten begünstigt ist, die elektronenliefernde Substituenten tragen. Die p-Tolylgruppe ist daher ein geeignetes und experimentell bequemes Beispiel. Ausgehend von den AuCl-Komplexen der Phosphane (1) wurden mit p-Tolyllithium zunächst die Tolylgoldverbindungen 2 synthetisiert, von denen 2a und b vorbeschrieben waren.

Die Arylgold-Komplexe 2 sind kristalline, hochschmelzende Substanzen, die durch etwas kolloidales Gold häufig leicht rosa gefärbt sind. Sie sind in organischen Solventien wie Benzol, CH_2Cl_2 , $CHCl_3$ und Tetrahydrofuran leicht löslich. Zu ihrer Identifizierung dienten die ¹H-, ¹³C- und ³¹P-NMR-Spektren (Tab. 1).

Die Zuordnung der ¹H- und ¹³C-NMR-Spektren gelang erst nach Darstellung der Vergleichssubstanz p-CH₃C₆H₄AuP(CH₃)₃ (**2e**) nach dem für **2a** verwendeten Verfahren. Bei dieser Verbindung kommt es nicht wie bei **2a** – **d** zur Überlagerung der Aromatensignale von p-CH₃C₆H₄Au und C₆H₅P, so daß eine Aussonderung der einzelnen Signalgruppen widerspruchsfrei möglich ist. Die Vergleichsdaten sind in Tab. 1 und 2 mit aufgeführt.

Zum Vergleich mit den Folgeprodukten waren daneben die ¹⁹⁷Au-Mößbauer-Spektren von **2a** und **d** von besonderer Bedeutung. Sie zeigten untereinander gute Übereinstimmung. Die Abweichung einer Literaturangabe für **2a**⁴⁾ ist uns auch deshalb unerklärlich. Soweit angegeben¹⁾, konnten wir dagegen die ¹H- und ³¹P-NMR-Daten voll bestätigen (**2a**).

	δCH ₃	δC ₆ H ₄	δCH ₂	δP	I.S.	Q.S.
2a	2.33, s	7.66	-	35.82	4.9495 (80) 3.96 ^{a)}	10.1322 (213) 7.43 ^{a)}
2 b	2.34, s	7.53	2.76, m	40.95	_	_
2 c	2.34, s	7.46	2.94, "q" – 1.92, t	36.10	_	-
2 d	2.34, s	7.53	2.41, m – 1.92, m	38.78	4.7133 (94)	9.7781 (198)
2e	2.38, s	7.41	1.34, s, CH ₃ ${}^{2}J(PH) = 10$	-	-	-
3 a	2.58, s	7.53		36.77	2.8925 (221)	8.2712 (269)
3 b	2.41, s	7.46	2.81, m	_	_ , ,	,
3c	2.41, s	7.56	2.64, m – 1.85, t	-		_
3 d	2.53, s	7.53	2.68, m - 1.92, m	34.50	2.9254 (117)	8.2552 (145)
1a	-	-	·	-	4.05 ^{a)} 4.14 ^{b)}	7.52ª) 7.47 ^b)

Tab. 1. ¹H- und ³¹P-NMR-Spektren und ¹⁹⁷Au-Mößbauer-Daten der Komplexe **2a** – e und **3a** – d (δ in ppm, J in Hz; I.S. und Q.S. in mm s⁻¹). NMR-Spektren in CDCl₃ bei 30°C, Mößbauer-Spektren an Kristallpulver bei 4K

^{a)} P. G. Jones, A. G. Maddock, M. J. Mays, M. M. Muir und A. F. Williams, J. Chem. Soc., Dalton Trans. 1977, 1434.

b) J. S. Charlton und D. I. Nichols, J. Chem. Soc. A 1970, 1484.

2. µ-(4-Methylcyclohexadien-1-ylidenio)-bis(phosphangold)-tetrafluoroborate

Die Einwirkung von HBF₄ auf **2a** in THF liefert unter Freisetzung von Toluol ein rotes, kristallines Produkt **3a**, dessen Eigenschaften, analytische und spektroskopische Daten mit den Literaturangaben gut übereinstimmen¹). Da von einem analogen Ferrocenylkomplex auch eine Röntgenbeugungsanalyse vorliegt, ist an der vorgeschlagenen Struktur vorerst nicht zu zweifeln.

Zur weiteren Charakterisierung von **3a** haben wir jetzt ein ¹³C-NMR-Spektrum und ein ¹⁹⁷Au-Mößbauer-Spektrum aufgenommen. Wichtigstes Resultat ist, daß sich **2a** und **3a** hierin – im Gegensatz zu den ³¹P-NMR-Spektren (Tab. 1) – in wichtigen Punkten deutlich unterscheiden. Sowohl die Isomerieverschiebung als auch die Quadrupolkopplungskonstante sind stark reduziert. Eine leichte Asymmetrie des Dubletts (Abb. 1) ist zwar bisher unerklärt, doch reicht sie nicht aus, eine Nichtäquivalenz der beiden Au-Atome anzunehmen. Ähnliche Asymmetrien waren auch in den Mößbauer-Spektren anderer Au-Verbindungen aufgetreten^{2c, 5)}.

In den ¹³C-NMR-Spektren treten im Aromatenbereich zu auffallend tiefem Feld Linien auf, die den Sechsringen am Goldatom zuzuordnen sind. Aus Vergleichen ergibt sich, daß es sich um die C-2-Atome in den *ortho*-Positionen handelt. Dieser Befund

		с.	(C ₆ H ₅)	4	2	CH ₂] _n			AnC,H,C	Ή,	
	5C-1 J(PC)	5C-2,6 2J(PC)	5C-3,5 ³ /(PC)	8C4 4J(PC)	SCH ₂ P 1/(PC)	^{5CH2} ² J(PC)	8C-1	8C-2,6	8C-3,5	8C4	8CH3
	1	133.9	129.1	131.9	1	1	I	ļ	I	I	1
		14	12	2	1	I	I	1	I	I	1
ct.	131.8	134.3	128.9	130.9	I	ł	136.2	139.1	128.1	129.5	21.2
	26	14	11	ы	I	ì	br.	s	s	s	\$
م	5,161	133.4	129.2	131.4	23.8	1	135.1	139.2	128.3	130	21.3
	23	"t", 7	", ' 5	klein	"t", 17	1	s	s	s	s	\$
ې	134.6	133.7	128.9	130.9	28.7, dd	19.8, t	•	139.4	127	130	21.2
	I	11	11	klein	10; 28	9	I	s	S	s	s.
p	134.0	133.2	128.9	130.9	27.7, d	26, dd	ł	139.0	128.1	129.3	21.2
	26	13	11	klein	29	16; 6	I	s	s	s	s
e		I	I	1	15.4, CII ₃		127.6	139.4	127.5	133.4	20.9
					d ^{a)}	I	(q P	s	s	s	s
8	132	133.8	129.5	132.3	i	I	I	149.4	126.3	130.1	22.1
	27	14	11	1.5	I	I	I	s	s	s	S
q	I	133.1	129.3	131.8	26.1, d	27.0, "dd"	1	149.6	127.3	131.0	21.4
	ł	13	12	klein	br.		I	S	S	s	s

Abb. 1. ¹⁹⁷Au-Mößbauer-Spektren der Komplexe **2a,d** und **3a,d** (Kristallpulver bei 4 K, I.S.-Werte relativ zu elementarem Gold)

paßt ausgezeichnet zu der Vorstellung, daß die positive Formalladung der Atomgruppierungen C-1(Au)₂⁺ in der üblichen Weise auf die *ortho*- und *para*-Positionen des Sechsrings delokalisiert wird. Die dadurch hervorgerufene Entschirmung drückt sich in der beobachteten Tieffeldverschiebung aus. Letztere ist damit auch diagnostisch für das Auftreten des C-1(Au)₂⁺-Strukturelements.

Die Umsetzungen der zweikernigen Komplexe 2b - d mit HBF₄ in THF verlaufen in prinzipiell gleicher Weise wie mit 2a. Es wird Toluol gebildet, und es entstehen rote Produkte, die als Feststoffe die erwartete analytische Zusammensetzung besitzen. Nur **3d** ist jedoch einheitlich und in polaren organischen Solventien ausreichend löslich, so daß eine spektroskopische Charakterisierung möglich ist. **3b** und **c** zersetzen sich in Lösung praktisch momentan.

3d zeigt nur ein ³¹P-Signal, und die ¹H- und ¹³C-Resonanzen der $[CH_2]_4$ -Brücke lassen gleichfalls eine symmetrische Anordnung des zweizähnigen Liganden erkennen. Das ¹⁹⁷Au-Mößbauer-Dublett ist dem von **3a** täuschend ähnlich (Abb. 1). Insbesondere aber beeindruckt das erneute Auftreten des C-2-Signals der "Tolylgruppe" bei 149.6 ppm. Die Daten sind insgesamt am besten vereinbar mit Formel **3d**.

3. Diskussion der Ergebnisse

Es verwundert nicht, daß nur das Diphosphino*butan* eine einigermaßen beständige cyclische Verbindung vom Typ 3 liefert, denn bei kleineren Ringen muß die Ringspannung erheblich destabilisierend wirken und die Bildung anderer Oligomerer begünstigen. Aus der Röntgenbeugungsanalyse der Ferrocenylverbindung⁶) ist ableitbar, daß der AuCAu-Winkel ca. 78° betragen sollte, was bei linearer PAuC-1-Anordnung eine P - P-Distanz ergibt, die nur von längeren CH₂-Ketten überbrückt werden kann. Der enthaltene Au – Au-Abstand von ca. 2.75 Å⁶) ist wohl das Minimum, auf das zwei formal nichtbindende Goldatome zusammengedrängt werden können. Daß aber selbst hier mit einer Au – Au-Wechselwirkung zu rechnen ist, ergibt sich daraus, daß der Wert von 2.75 Å bereits unter dem des Au – Au-Abstands im metallischen Gold liegt (2.884 Å). Dieser Tatbestand veranlaßt zur Eintragung einer punktierten Linie in Formel 3d. Keines der erhaltenen Materialien war von ausreichender Qualität, um eine Röntgenbeugungsanalyse zu ermöglichen.

Den Strukturvorstellungen kommt deshalb vorläufiger Charakter zu.

Unsere Arbeiten wurden in dankenswerter Weise unterstützt von der Deutschen Forschungsgemeinschaft und vom Verband der Chemischen Industrie sowie von der Fa. Degussa AG. Die Mößbauer-Spektren verdanken wir Herrn Doz. Dr. F. E. Wagner, Physik-Department E 16 der TU München.

Experimenteller Teil

Alle Arbeiten wurden zum Ausschluß von Luft und Feuchtigkeit unter trockenem Stickstoff durchgeführt. Lösungsmittel und Geräte waren entsprechend vorbehandelt. – Spektrometer: Varian EM 360, Jeol HFX 60 und FX 60.

Chloro(triphenylphosphan)gold (1a) wurde aus HAuCl₄ und P(C₆H₅)₃ nach bekanntem Verfahren hergestellt (89% Ausb.). *p*-Tolyl(triphenylphosphan)gold (2a) entsteht daraus bei der Einwirkung von *p*-Tolyllithium in Tetrahydrofuran mit 57% Ausbeute, Schmp. 145 °C.

 μ -[1,2-Ethandiylbis(diphenylphosphan)]-bis(chlorogold) (1b): Die Lösung von 0.85 g Bis(diphenylphosphino)ethan (2.14 mmol) in 40 ml Benzol wird bei Raumtemp. zu einer Lösung von 1.1 g Carbonyl(chloro)gold (4.22 mmol) in ebenfalls 40 ml Benzol getropft. Es bildet sich ein weißer Niederschlag, der nach 1 h Rühren und nach Abklingen der CO-Entwicklung abfiltriert wird. Ausb. 1.80 g (99%), farblose Kristalle vom Schmp. 268 °C, löslich in THF, CH₂Cl₂ und CHCl₃.

IR (Nujol): $v(AuCl) = 340 \text{ cm}^{-1}$.

 μ -[1,3-Propandiylbis(diphenylphosphan)]-bis(chlorogold) (1 c) und μ -[1,4-Butandiylbis(diphenylphosphan)]-bis(chlorogold) (1 d) entstehen wie 1b aus den α , ω -Bis(diphenylphosphino)alkanen und Au(CO)Cl in Benzol bei 20 °C unter CO-Entwicklung im Laufe 1 h.

1c: 0.71 g $[(C_6H_5)_2P]_2C_3H_6$ (1.72 mmol) und 0.89 g Au(CO)Cl (3.42 mmol) ergeben 1.37 g Produkt (91%), farblose Kristalle, Schmp. 242-245 °C. – IR (Nujol): v(AuCl) = 330 cm⁻¹.

1d: 1.12 g $[(C_6H_5)_2P]_2C_4H_8$ (2.63 mmol) und 1.36 g Au(CO)Cl (5.22 mmol) ergeben 2.30 g Produkt (99%), farblose Kristalle, Schmp. 250-256 °C.

 μ -[1,2-Ethandiylbis(diphenylphosphan)]-bis(p-tolylgold) (2b): Zu 0.98 g 1b (1.14 mmol) in 40 ml THF werden bei Raumtemp. unter Rühren 3.2 ml einer 0.8 N etherischen Lösung von p-Tolyllithium (2.56 mmol) gegeben. Nach 1 h wird mit Wasser zersetzt, die organische Phase abgetrennt, mit K₂CO₃ getrocknet und i. Vak. vom Lösungsmittel befreit. Der Rückstand kann aus CHCl₃/Pentan-Gemisch kristallisiert werden, Ausb. 0.76 g (68%), farblose Kristalle vom Schmp. 182 °C, löslich in THF, CH₂Cl₂ und CHCl₃. – IR (Nujol): v(AuCl) = 514 cm⁻¹.

C40H38Au2P2 (974.6) Ber. C 49.30 H 3.93 P 6.36 Gef. C 49.16 H 4.20 P 5.98

 μ -[1,3-Propandiylbis(diphenylphosphan)]-bis(p-tolylgold) (2c) und μ -[1,4-Butandiylbis(diphenylphosphan)]-bis(p-tolylgold) (2d): Wie für 2b beschrieben, werden folgende Resultate erhalten:

2c: 1.16 g **1c** (1.32 mmol) und 2.80 mmol p-CH₃C₆H₄Li ergeben 0.48 g Produkt (36%), leicht rot gefärbte Kristalle, Schmp. 92–95 °C, löslich in Benzol, Aceton, THF, CH₂Cl₂ und CHCl₃.

C41H40Au2P2 (988.7) Ber. C 49.81 H 4.08 Gef. C 49.76 H 4.13

2d: 2.30 g 1d (2.58 mmol) und 6.0 mmol p-CH₃C₆H₄Li ergeben 1.44 g Produkt (56%), leicht rot gefärbte Kristalle, Schmp. 186 °C, Löslichkeit wie 2c.

C42H42Au2P2 (1002.7) Ber. C 50.31 H 4.22 Gef. C 51.12 H 4.35

Die Verbindung **2e** wurde analog aus $(CH_3)_3$ PAuCl und *p*-CH₃C₆H₄Li dargestellt. Die Aufarbeitung ergab ein farbloses, festes Produkt, dessen Ausbeute nicht bestimmt wurde. Es wurde nur NMR-spektroskopisch identifiziert.

 μ -(4-Methylcyclohexadien-1-ylidenio)-bis[(triphenylphosphan)gold]-tetrafluoroborat (3a): Die Wiederholung der Vorschrift in Lit.¹⁾ mit 0.48 g 2a (0.872 mmol) und 0.10 g HBF₄ (1.14 mmol) in THF ergab 0.40 g Produkt (84%). Leicht rot gefärbte Kristalle von 3a, Schmp. 154 °C, löslich in THF, CHCl₃ und Aceton. – IR (Nujol): v(BF₄) = 1055 cm⁻¹.

C43H37Au2BF4P2 (1096.5) Ber. C 47.10 H 3.40 Gef. C 46.66 H 3.43

 μ -[1,2-Ethandiylbis(diphenylphosphan)]- μ -(4-methylcyclohexadien-1-ylidenio)-digold-tetrafluoroborat (3b), μ -(4-Methylcyclohexadien-1-ylidenio)- μ -[1,3-propandiylbis(diphenylphosphan)]-digold-tetrafluoroborat (3c) und μ -[1,4-Butandiylbis(diphenylphosphan)]- μ -(4-methylcyclohexadien-1-ylidenio)-digold-tetrafluoroborat (3d)

3b: Die Lösung von 0.23 g **2b** (0.236 mmol) in 50 ml THF wird unter Rühren mit 1.14 mmol HBF₄ in 5 ml Diethylether versetzt. Es fällt ein weißer Niederschlag, der nach 1 h abfiltriert wird, Ausb. 0.15 g (66%), leicht rot gefärbte Kristalle, Schmp. 230–230.5 °C. Nur wenig löslich in CH_2Cl_2 , $CHCl_3$ und Aceton. – IR (Nujol): v(BF₄) = 1050 cm⁻¹.

C₃₃H₃₁Au₂BF₄P₂ (970.3) Ber. C 40.85 H 3.22 Au 40.60 Gef. C 40.30 H 3.23 Au 39.60

3c: Bei der analogen Umsetzung von 2c mit HBF₄ in THF tritt rasch Zersetzung ein. Ein unreines, stark verfärbtes Produkt (96% Ausb.) vom Schmp. 192 °C ergab keine zufriedenstellenden Analysendaten. – IR: $v(BF_4) = 1060 \text{ cm}^{-1}$.

3d: Wie für 3b beschrieben, ergeben 0.3 g 2d (0.30 mmol) und 0.57 mmol HBF₄ ein leicht grau gefärbtes Produkt vom Schmp. 146 °C, Ausb. 0.20 g (67%). Löslich in THF, Aceton, CH_2Cl_2 und $CHCl_3$. Die Lösungen sind bei Raumtemp. instabil. – IR (Nujol): v(BF₄) = 1055 cm⁻¹.

C₃₅H₃₅Au₂BF₄P₂ (998.4) Ber. C 42.11 H 3.53 Gef. C 43.00 H 3.73

Literatur

- ¹⁾ ^{1a)} K. I. Grandberg, T. V. Bankova, E. G. Perevalova und A. N. Nesmeyanov, Dokl. Akad. Nauk SSSR **206**, 1355 (1972) [Chem. Abstr. **78**, 58568t (1973)]. – ^{1b)} A. N. Nesmeyanov, E.G. Perevalova, K. I. Grandberg, D. A. Lemenovskii und T. V. Bankova, Vestn. Mosk. Univ. Khim. **14**, 387 (1973) [Chem. Abstr. **79**, 146613e (1973)]. – ^{1c)} A. N. Nesmeyanov, E. G. Perevalova, K. I. Grandberg, D. A. Lemenovskii, T. V. Bankova und O. B. Afanasova, J. Organomet. Chem. **65**, 131 (1974). – ^{1d)} A. N. Nesmeyanov, E. G. Perevalova, K. I. Grandberg und D. A. Lemenovskii, Izv. Akad. Nauk SSSR, Ser. Khim. **1974**, 1124 [Chem. Abstr. **81**, 49718b (1974)].
- ²⁾ ^{2a)} H. Schmidbaur und R. Franke, Inorg. Chim. Acta **13**, 84 (1975). ^{2b)} H. Schmidbaur, J. R. Mandl, A. Frank und G. Huttner, Chem. Ber. **109**, 466 (1976). ^{2c)} H. Schmidbaur, A. Wohlleben, F. Wagner, D. F. van de Vondel und G. P. van der Kelen, ebenda **110**, 2758 (1977); J. Chem. Soc., Chem. Commun. **1976**, 170. ^{2d)} H. Schmidbaur und O. Gasser, Angew. Chem. **88**, 542 (1976); Angew. Chem., Int. Ed. Engl. **15**, 502 (1976).
 ³⁾ ^{3a)} G. van Koten und J. G. Noltes, J. Organomet. Chem. **80**, C 56 (1974); **82**, C 53 (1974). -
- ³⁾ ^{3a)} G. van Koten und J. G. Noltes, J. Organomet. Chem. **80**, C 56 (1974); **82**, C 53 (1974). –
 ^{3b)} G. van Koten, J. T. B. H. Jastrzebski und J. G. Noltes, Inorg. Chem. **16**, 1782 (1977); J. Organomet. Chem. **140**, C 23 (1973); **148**, 317 (1978). ^{3c)} G. van Koten, J. T. B. H. Jastrzebski, J. G. Noltes, W. M. G. F. Pontenagel, J. Kroon und A. L. Spek, J. Am. Chem. Soc. **100**, 5021 (1978). ^{3d)} G. van Koten und J. G. Noltes, J. Organomet. Chem. **171**, C 39 (1979).
- ⁴⁾ P. G. Jones, A. G. Maddock, M. J. Mays und M. M. Muir, J. Chem. Soc., Dalton Trans. 1977, 1434.
- ⁵⁾ H. Schmidbaur, D. Koth und F. Wagner, Z. Naturforsch., Teil B, **31**, 1607 (1976); H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama und G. Huttner, Chem. Ber. **110**, 1748 (1977); H. Schmidbaur und J. R. Mandl, Naturwissenschaften **63**, 585 (1976).
- ⁶⁾ V. G. Adrianov, Y. T. Struchkov und E. R. Rossinskaya, J. Chem. Soc., Chem. Commun. 1973, 338; Zh. Strukt. Khim. 15, 74 (1974) [Chem. Abstr. 80, 149737e (1974)].

[289/79]